ECE 172A: Introduction to Image Processing
Discrete Images and Filtering: Part ||

Rahul Parhi
Assistant Professor, ECE, UCSD

Winter 2025

Outline

e Characterization of Discrete Images

— Discrete Image Representation

— Discrete-Space Fourier Transform

— Two-Dimensional z-transform (= (271, z2)-transform)
e Discrete (Digital?) Filtering

— Filtering With 2D Masks

— Equivalent Filter Characterizations

— Separability

e Filtering Images: Practical Considerations

Filtering Examples: Reuvisited

r 1 1

— Horizontal-edge enhancement

T -1 -2 -1
Whor = 0 |0 0
1 2 1

— Vertical-edge enhancement

-1 0 1

>
@
=t
|
|
(N
-

Local Average

e Mask
1 1
Waove — § 1 1 1 — have — X
11 1 11 1
_ 1 —1 1 —1
e Transfer function: H(z1,22) = 5(2’1 +14+2) §(22 +1+2,7)
. . 14+ 2 1+ 2
e Frequency response: H(e)*! el¥?) = (- ;OSM) (i ;OSW2>
‘Have(er)‘ — Have(ejwl)Have(ejWQ)
1
low-pass behavior
0 | |
—1Tr s 0 n

Vertical-Edge Enhancement

e Mask:
"1 0 17 "1 0 —1°
Wyert — —2 0 — hvert — 0 —2
-1 0 1 1 0 -1
“correlation” “convolution”
e Transfer function: H(z1,29) = (21 — 27 (22 + 24+ 25 1)
e Frequency response: H (e, el?) = (j2sinw)(2 + 2 cosws)
[Hy(e')] = Hi(e’") Hiow (€72
2_
1 band-pass behavior
0k . . Horizontal-edge enhancement
—Tr T 0 1

70
2 B} Is just the “transpose”

Filtering Examples: Separability

1
1 1 1
have:§ 1 1 1 :§ 1 g[l 1 1]
1 1 1 1
— Horizontal-edge enhancement
12 1] [1
hhor — 0 0 0 — 0 y [1 2 1]
-1 -2 -1 —1]
— Vertical-edge enhancement
1 0 -17 [1r
hvert — 0 —2 = |2] - [1 0 —1]
1 0 -1] 1

Separability

Most useful image-processing filters are separable...
which brings us back to a 1D problem

o Definition(s) of separability

hlky, ko) = o [k1]ho ko]
0

H(Zl, ZQ) — H1 (Zl)HQ(ZQ)

0

H(ejwl 7 ejwz) — H, (ejwl)H2 (ejwz)

)
h=hsh

Separability

e Multiplication-table perspective

}) 1|0 |-1
a1b1 a2b1 - aMb1 11110l
aiby agbs --- apbo > 2ol
T _
ba' = 1[1]0]-1
a1by agby - anby_ Example: a = (1,0,—1) and b = (1,2,1)

Vertical-edge enhancer

A filter is separable if and only if it can be
factored as the outer product of two vectors

A filter is separable if and only if it is rank 1

Example: Smoother

1 2 1
h=— |2 [4
16
1 2 1

Exercise: (i) show that this filter is separable
(ii) Determine the 1D filters that comprise this 2D filter
(iii) Determine the transfer function of this filter

AN RIS 1 D
16 1 2 1 4 T 4
1/4, k= +1
h[kl,kg]:hl[k'l]hl[kg] where hl[k]: 1/2, k=0
0, else

1 _ _
H(z1,29) = 1—6(z1 + 2 + 2 1)(22 + 2+ 2, 1)

Separable Filtering

Are there any limitations to considering separable filters?

e Orientation-sensitive filters are in general non-separable

— Often used in texture analysis

e Separable filters have an efficient implementation

1D filter 1D filter
(rows) (cols)

1D filter 1D filter
(cols) (rows)

Recursive Filtering

Recursive filtering provides an efficient way to implement IIR filters

e Rational transfer function and difference equations

_1bmz_m
) G(2)) mz::() N-1 o M—1)
H(z) F(z) = N = Z anglk —n| = Z b f |k — m]

_ n=0 m=0
E anz

—0
" recursive-filter implementation

— Example: Causal exponential

60) = (1o) FG) = gk = S~ axglh— 1

e Stability of rational filters When is this system stable?

— poles inside the unit circle

11

Recursive Filtering

Recursive filtering provides an efficient way to implement IIR filters

e Rational transfer function and difference equations

— Example: Causal exponential

pole at z = a3

:)F<z> — o[k = fIH + arglk—1

1 —z2z71aq

o) = (

— Example: Anti-causal exponential

-1
pole at z = a4

G<z>=(1)F<z> — gl = fIH + arglk + 1

1 — zaq

Can both of these filters be simultaneously stable?

1

1 — zaq

What makes H(z) = (> not causal?

12

Filtering Images: Practical Considerations

e Filter Design for Image Processing
e Boundary Conditions

e Fourier-domain versus spatial-domain implementations

13

Filter Design for Image Processing

magnitude magnitude
2 e : .
B ‘ . 1' 4 . p
£ 2 R 13 = v
E = i B g | :
g 4
-" L)
: |

e Semantic information (edges, contours, etc.) is stored in the phase

of the Fourier transform

— Use linear-phase filters (i.e., symmetric or antisymmetric)

e Exact shape of the frequency response is not so important

— Go for the simplest and fastest

14

Boundary Conditions

e 60s-80s: Lazy handling (IP filters are short anyways...)

e 90s: people started to care about the boundaries (splines, wavelets)
— Input image: K X L array: {f[kal]}k:O,...,K—l,l:O,...,L—l

— Extended image: {fext|F, 1)} (k. 1)ez2

— Filtered image: g¢glk,l] = Z hlm, 1] fexs[k —m, 1 —n]

(m,n)€EZ?

e lLazy solution: Zero padding

foulk,] =0 for (k1) &10,.... K —1]x][0,...,L—1]

CAUTION: Lack of consistency;
I.e., filtered version of a zero-padded image
is no longer zero at the boundaries.

Boundary Conditions (cont’d)

e Periodization < >

foxt[k, 1] = f[k mod K, mod L]

e Advantages

— Simple to implement
— Consistent: filtering a periodic image produces a periodic image

— Periodization is implicit if filtering is performed with FFTs

e Disadvantage

— Produces boundary artifacts

16

Boundary Conditions (cont’d)

e Symmetrization / mirror folding

Vk € ZQ) fext [k] — fext[_k] and fext [kO + k] — fext [kO _ k]
ko= (K —1,L —1)

— Image extension is 2kg-periodic

e Advantages

— Simple to implement

— Consistent: symmetric filtering a folded image
produces a folded image; antisymmetric filtering

yields an antisymmetric folded image

— No boundary artifacts

17

Periodic Extensions and FFT-Based Filtering

Periodic convolution < convolution with periodic extension

equivalent to FFT-based filtering

e Algorithm

fERNXN >

2D
FFT

H(ej27rk/N)

&

2D
IFFT

_— QERNXN

What is the complexity of this algorithm?

1. 2D FFT of N x N image O(N?log N)
2. Multiply with the FFT of the filter impulse response O(N?)
3. Take the inverse FFT of the result O(N?log N)

Total procedure complexity is O(N?log V)

18

Fourier-Domain vs. Spatial-Domain Filtering

Long filters should be implemented in the Fourier domain!

Rule of thumb:

FFT filtering starts paying off when the number of taps is greater
than 8log, NV in 1D, and 16log, N in 2D

However:

— Most usual image-processing filters are short (e.g., 3 x 3)
—> They are implemented most efficiently in the spatial domain

— Some classes of large filters can also be implemented efficiently in the
spatial domain using recursive and/or multiscale algorithms

— Boundary conditions are handled best in the spatial domain

— Spatial-domain implementations gives more flexibility: spatially-adaptive
filters, non-linear filtering, etc.

19

Useful Filters for Image Processing

e Smoothing
e Moving Average
e Symmetric Exponential Filter

e Gaussian Filter

Smoothing: The Universal Tool

e Spatial smoothing
— Simulate a sampling aperature
— Adjustable resolution
— Flexibility?

How can we design other kinds
of filters with smoothing?

original image

e Primary applications
— Image simplification
— Noise reduction

— Image enhancement

— Feature extraction

(image analysis) original — smoothed
(high-pass filtering)

smoothed image
(low-pass filtering)

smoothed; — smootheds
(band-pass filtering)

21

Smoothing (cont’d)

e Desirable features

— Computational efficiency (fast) — Shape of frequency response

— Simplicity IS not so Important

— Adjustable size — Best to avoid sharp frequency cut-offs
— Symmetry (Gibbs oscillations)

(sensitivity of human-visual-system
to phase distortion)

Efficient + Adjustable size — Separable 4+ Recursive implementation

e Smoothing-filter requirements (1D)
Positivity: hlk] > 0, Vk € Z

Unit gain: Zh[k] =1 & H(2),=1=1
keZ
Symmetry: h[k] =h[-k] = > kh[k]=0 "Window size”: 02 =", _, k? h[k]

(centered at the origin) 22

Example: Moving Average Filter

e L1 X Ly moving average

1 [L1/2] [L2/2]
g[kl,]CQ] — L1L2 Z Z f[kl — m, kg — TL]

Ly and Ly are the horizontal and vertical window sizes (must be odd)

e Example: 3 X 3 moving average

1 _ _ 1 1 1
h = 9 I |1 1| = 3 1] - 3 [1 1 1] (separable filter)
1 1 1] 1

e General case: separable transfer function

H(z1,22) = HLl(Zl)HLQ(Zz)
B L—1
where Hp (z Z 127" = L 2* with Lo = | L/2]
k_—LO k=0

Implementation by successive filter along rows and columns!
23

Moving Average Implementation

e Recursive implementation in 1D Lo = | L/2]
flk — Lo f k] flk — Lo + L]
— — “/ l/ ¥/' 1 L—1
S O e T glk] = 7 > flk— Lo +1]
- ; N 1=0
glk + 1] = 777

gl +1) = glk] + T (f[k — Lo + L] — f[k — Lo)

2 additions and 1 multiplication per sample, irrespective of L!

z-Transform: 2G(z) = G(z) + %F(z)(zL_LO — z~Lo)

-85 - 5 (4)

24

Moving Average: Transfer Function

e z-Transform

Hyo) = 20 = 20 (2

Exercise: Compute the Fourier transform Hp(e¥). Hint: L =2Lo+1

ejw(Lo—I-l) _ e~ JwLo 1 eij/2 _ e—ij/Z
ej“’ — 1) - L (ejw/2 _e—jw/2)

Hp(e!) = % (

1 sin(wL/2)
| - L sin(w/2)

075 | =3

05 | L=5

As [increases, the filter
becomes more low-pass

025 |

L=T

-0.25 L

25

Symmetric Exponential Filter

e Impulse response J\

VA IR

hlkr, ko] = Cay™lay™

Mﬂ/ﬂ I\T\T\H i

C' such that Z hlk] =1

kcZ2

e Separable transfer function
Ca

H(z1,29) = Hy,(21)Hgy,(22) where H,(z) = (1—az"1)(1 - az)

Implementation by successive filter along rows and columns!

1

a=0.2
0.75 | a=0.4

As a increases, the filter
becomes more low-pass

0.5 | a=0.8

025}

Symmetric Exponential Construction (1D)

e Construction of a symmetric exponential hy [K]

a*' = h [k]+ hi[-k] —0[k], O0<a<1

. he [k] = hy [~
R S
e 0, else T\ T gt B
e Transfer function
1 1 1 —a?
-1y _ 1 = | —1 =
Hi(z)+ Helz) — 1 l—az=! 1—-az (1 —az71)(1 —az)
e Normalized exponential
C 1—a
H,(z) = . h that hokl=H,(1) =1 = C, =
(2) (1 —az=Y(1 —az) PHEn e Z i (1) l1+a

keZ

_(lza\m =, gy (-a)f
halk] (1—|—a> \ + o Halz) (1 —az=Y(1 —az)

27

Exponential Filtering: Implementation

e Exponential filter: H,(2)

Cq

(1 —az=Y(1 —az)

Cascade of first-order recursive filters

1

g2 k]

>

1l —az

anti-causa

= Gi(2) = F(2) +az 'G1(2)

k
o
causal
Gi(2) = 1 fii)—l

e Recursive-filtering algorithm

1. Causal filtering: g1|k| = flk] + ag1lk — 1], for k=0,...,N — 1

2. Anti-causal filtering: go|k] = g1]k] + agalk — 1], for k=N —1,...

3. Normalization: glk|] = C, gs|k]

28

Gaussian Filter

e 2D Gaussian impulse response

1 k% + k2
helky, ko] = 53 OXP (—(LT 2)) = gaussian(ki; o) - gaussian(ko; o)

To 202
wnere gausSlanl K, o) = cX
g Y /2 2 p 2 2

e Motivation for Gaussian filters

— Only filter that is both circularly symmetric and separable

—> Implementation by successive filter along rows and columns!

— Optimal space-frequency localization (uncertainty principle)

— Linear scale space

29

Linear Scale Space and the Melting Cat

u(w,y;t = 0)
o=1 oc=4
e Heat-flow interpretation
0 1
Diffusion equation (isotropic): u(xa,ty,) = Au(z,y;t)

General solution: w(x,y;t) = u(x,y;t = 0) * gaussian(z, y; 0 = V/2t)

30

Central Limit Theorem (CLT)

e Probability density function (p.d.f.) e Moments: mean and variance

p(x) =0 /) p(z)dr =1 Kot
—00 uw=E[X]= /_ rp(x)dr

oo

0% = var(X) = /_OO (z — p)? p(z) dz

e Sum of two independent random variables (X7 and X5 i.i.d. from p(x))

var(X; + Xo) = var(X;) + var(X,) = 202 p.d.f. of the sum px, . x,(x)

e Sum of N i.i.d. random variables from p(x) = (pxp)(2)

N N
var (Z Xz) — Zvar(Xi) — N0'2 pdf of the sum psum_(m)
i=1 i=1 —\p*p*"'*p)(ﬂf)

_J/

-~

N times

1 r — Np)’
CLT: (pxpx---*p)(x) N V21 No2 eXp(| 2N05))

Efficient Gaussian Filtering

e Convolution interpretation of the CLT

“The N-fold convolution of any low-pass filter converges to a Gaussian”

e Gaussian filtering by repeated moving average (L = 2Ly + 1)

“window size” 0% =) k>hl[k]

ke,
Lo
1 Lo + L§
2 _ 2 0 0 .
ave = 9T 11 k:E—L:O 3 What does this mean:

Lo+L2)

— N-fold convolution is approximately Gaussian with 0% = N (2

Choose N and L to adjust the approximate Gaussian filter

32

Efficient Gaussian Filtering

e Gaussian filtering by repeated low-pass filtering H(z)

How do we determine the window size from H(z)?

H(z) = h[k]z7"
keZ
dH (z) - —k—1
= éh[/@](—k)z

d*H(z) h_g
o= k%h[k](k+ kzF

d?H (2) _ Z & h[K]

d?z .
ke

i

(

> "k h[k] =0 by assumption
keZ

)

33

Efficient Gaussian Filtering

e Gaussian filtering by repeated exponential filtering

(1-a)’
(1 —az=1)(1—az)

H,(z) =

Exercise: (i) Determine the window size
(ii) Determine the equivalent Gaussian variance after N iterations
(iii) Determine exponential parameter a for a desired ¢ and N

2a 2Na
2 _ L L 2 _
xp = (1 Z g2 N iterations =— o0° = 1—a)

o)

N N? 4+ 2No?
a:1+__\/ +2INo

34

Nomenclature of Prototypical Filters

all-pass band-pass
H(e)] CIHE)|
—T 7
low-pass band-cut

H(e)| ; H(e)|

>
. -
high-pass all-cut
p [H(e™)| 5 p [H()]
T —T T

35

Summary

Discrete images are sequences indexed by two spatial integer variables. When they have finite
energy, they can be viewed as points in the vector space ¢*(Z?).

A discrete image is characterized by its 2D Fourier transform which is (27 x 27)-periodic.

The 2D z-transform often provides a more convenient characterization. It is a direct vector
generalization of the 1D transform. Thus, it has essentially the same properties.

Discrete filtering can be described as a local masking operation, or as a discrete convolution. A
2D discrete filter is either described by a mask (which displays the reversed version of the impulse
response), its transfer function, or its frequency response.

When processing images, special care has to be taken to handle the boundaries (periodization or
mirror folding).

Many popular image-processing filters are short and separable. The computations are therefore
usually performed in the spatial domain by successive filtering along the rows and columns.

Very useful, low-complexity spatial smoothers are the moving average, the symmetric expo- nential,
and the Gaussian filter. They can all be implemented recursively with a complexity independent
of the window size.

36

